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NUMERICAL STUDY OF LEADING-EDGE HEAT
TRANSFER UNDER FREE-STREAM TURBULENCE
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Work supported under grant F49620-97-1-0047 from Air Force Office of Scientific Research

Abstract

The effect of incoming organized disturbance and free-stream turbulence on leading-edge heat transfer is
investigated numerically. An optimum length scale is found to give the maximum heat transfer enhancement
for the organized disturbance case. Beyond this optimum value, the enhancement decreases with the increase
of length scale. For the free-steam turbulence case, large eddy simulation with dynamic SGS model is
performed at Reynolds number Rep = 10* based on upstream velocity u, and the leading edge diameter
of curvature D. The free-stream turbulence is specified as homogeneous, isotropic turbulence with intensity
Uhms/Uoo = 0.08 and integral length scale L/D = 0.1. Three different regions characterize the interaction
of turbulence impinging on the leading edge. For the conditions of the simulations a turbulent heat transfer
enhancement of 11% is obtained, which is in fair agreement with the experimental data. The level of heat
transfer enhancement is modest because of the Reynolds number is low. However, our results show that in
the region very close to the leading edge, the energetic turbulence length scale decreases to the order of 2-3
times the local boundary layer thickness, so a high grid resolution is needed for accurate prediction of heat
transfer using large eddy simulation. This is a challenge for future investigations where simulations at higher
Reynolds numbers and transonic flow conditions are planned.

Our results motivate a hybrid simulation strategy where the turoulence outside and away from a blade
surface is captured using LES techniques while a finer DNS-like gri 1s embedded within the near-wall region
to resolve the smaller eddies responsible for near-wall effects. Such a methodology is being developed in an
extension of the work supported under this grant.

1 Introduction

The effect of significant free-stream turbulence generated by the combustor and the upstream blade rows
on turbine blade heat transfer is a critical problem in advanced gas turbine design. An improved under-
standing and accurate prediction of the heat transfer under free-stream turbulence is of essential importance
for achieving high turbine inlet temperatures and better thermal efficiency. It is known that free-stream
turbulence can cause a large increase in leading edge heat transfer. Many experiments have been conducted
to investigate the correlation of the heat transfer enhancement to various flow parameters, such as Reynolds
number, Mach number, turbulence intensity, turbulence length scale and the leading edge geometry [1-5].
Ames et al. [4] found that both turbulence intensity and turbulence length scale are important in correlating
stagnation region heat transfer. Van Fossen et al. [5] found the heat transfer augmentation increases with
decreasing length scale and the spanwise averaged heat transfer coefficient can be more than 50 percent

t Also affiliated with Department of Aeronautics and Astronautics, Stanford University.
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higher than the two-dimensional laminar value. To understand the sensitivity of the heat transfer in the
stagnation-region boundary layer to free-stream disturbance, Sutera[6] proposed a theoretical model to study
the vorticity amplification due to the stretching of the vortices in the diverging stagnation-flow. Rigby et
al. [7) numerically simulated spanwise variations in the laminar free-stream in the flow over circular and
elliptical leading edges and found the wall heat transfer rate increased by as much as 25 percent. Bae et al.[8]
performed a numerical simulation of laminar plane stagnation-region flow with organized free-stream span-
wise disturbances, and found three different regimes for the amplification/damping of streamwise vortices
depending on the disturbance length scale.

Numerical simulations using organized laminar disturbances can isolate various factors such as flow
disturbance intensity and length scale that affect leading edge heat transfer, and provide a simple but
approximate analogy to the unsteady interacting process between free-stream turbulence anu the leading
edge. However, the direct computation of free-stream turbulence interacting with the leading cdge is very
important for understanding the global mechanism of turbulent heat transfer enhancement, and for further
developing physically-based turbulence models capable of accounting for the effects of free-stream turbulence.
In the present study, we perform a large eddy simulation (LES) of free-stream turbulence interacting with
the elliptical leading edge of a finite thickness isothermal flat plate. The flow configuration is based on the
experiments previously studied by Van Fossenet al.[5]. The purpose is to explore in detail the unsteady
interaction process between free-stream turbulence and leading-edge flow and obtain a better understanding
of the heat transfer augmentation mechanism. In addition, the simulation also serves as an evaluation of the
feasibility of using LES as a tool for accurate heat transfer prediction in the gas turbine environment.

The report is organized as follows. The governing equations and methodology for large eddy simulation
. are described first, followed by the numerical schemes for the implicit time marching and high order spatial
differencing. The generation of free stream turbulence with specified inténsity and length scale is discussed
together with the inflow boundary conditions for specifying the free-stream turbulence. Both the results from
laminar organized disturbances and free-stream turbulence are presented and discussed. The heat transfer
enhancement results are compared with reported experimental values, and the typical flow structures at the
leading edge are investigated. Concluding remarks summarize the results and discuss future plans for this
research.

2 Governing Equations

The governing equations for large eddy simulation are the Favre-filtered compressible continuity and Navier-
Stokes equations, written in the non-dimensional primitive variables:

Pyt (Pui),: =0 (1)
- — - _ 1 < -
Pilie + Pitjii; = =P + 7o [(Ays).a + (20545).4] = Tiz.j . 2
=7 == _ 2 P A P R
pT,t + WzT,z + (7 l)ﬁuj,] PrRe [KT,z],z +
Yy - 1)M? < 5 - P
'—(l"—éé)—[/\siisjj + 2/25:5Si5) — @i (3)
with the filtered equation of state for ideal gas
__ T
p= 71\12 (4)

In the above equations, p is the density, u; is the velocity vector, p is thermodynamic pressure. M, Re and
Pr are the Mach number, Reynolds number, and Prandtl number defined as

M=t2 Re=Lxtel p_ =G (5)
Cxo Hoo Koo

Subscript oo denotes the far upstreamm ambient conditions. ¢ is the speed of sound. D is the leading
edge diameter of curvature, u and X are the first and second coefficients of viscosity, and x is the thermal




conductivity. S;; = l(u, j + uj;) is the rate-of-strain tensor. Subscripts following a comma denote partial
differentiation with respect to the subscript, and the Einstein summation convention is used. The filtered or
large scale flow quantity f, denoted by an overbar is given by:

7= / Gz - 2)f(z')dz’ (6)
D

where G is some spatial filter-kernel and the integral is over the flow domain. The Favre-averaged quantity,
denoted by a tilde is defined as o
f=pf/? (7)

The effect of the small scales are present in the above equation through the sub-grid scale (SGS) stress tensor
7;; in the momentum equation,
Tij = pluu; — ;i) _ (8)

and the SGS heat flux in the energy equation,
gi = pwiT — &T) 9)

Several other subgrid-scale terms have been neglected from the energy equation following the same argument
as in [9]. The power law for the molecular viscosity coefficient fi is employed

i =107 . (10)

and Stokes’ hypothesis is used for the second viscosity coefficient X

3 Dynamic SGS model

To close the momentum and energy equation, 7;; and g; must be modeled. For 7;;, the trace-free Smagorinsky
eddy viscosity model is used :

Tij = §q26,~j — 2CpA%|S|(S; - ggkkéij) (11)

where ¢> = 7;; is the isotropic part of the SGS Reynolds stress tensor, Sl’j = %(ﬂi, j + 4j,:) and IS’I =
(25',-1-5,»]')1/ 2, The SGS energy ¢ is parameterized using Yoshizawa’s expression:

©¢° =20p8%5)° (12)
For the g¢;, the eddy diffusivity model is used
_CcpAYS) ; |
g = — Pry T; (13)

where Pr; is the SGS turbulent Prandtl number and C is the same as in (11). We use the dynamic procedure
to compute the eddy coefficients C, C; and SGS turbulent Prandtl number Pr;, which are all functions of
instantaneous flow variables. The key concept of the dynamic model is the effective utilization of the large-
scale field which is computed directly. This information is brought to bear by introducing a “test filter”
with a larger filter width than the resolved grid filter, which generates a second field with scales larger than
than the resolved field. Details of the derivation may be found in [9]. Let a spatially test-filtered quantity
be denoted by a caret and the width of the test filter is denoted by A, the SGS coefficients Cy, C can be

computed as

Cr = <Lwk> (14)

< 2(pA2|5]? - A2p|SP?) >
< (Lij — 5 Lxxbij)Mi; >

C =
< MijMij > (15)
where . o
Li; = puiti; — (pa:)(pu;)/p (16)




and

7151 Skk6i;) (17)
The turbulent Prandtl number Pr; is given by

C < A%T T, - A%|5|T T, >

— = . == (18)
< (rhot; pT [p —pu;T)T; >

P’I‘t=

where C is given by (15), and <> indicates a volume averaging procedure which is needed to make the
determination of C; and the other SGS coefficients well conditioned. For all of the computations presented
here, the ratio of the test-filter width to the grid-filter width A/A is taken as 2.0 and C; = 0.0.

4 Numerical Method

The solutions to the Favre-averaged equations (1)-(4) are obtained numerically using implicit time integration
with an approximately-factorized finite difference scheme. In the case of time accurate computations, the
Newton-like sub-iteration scheme is employed. For the purpose of analysis, the Navier-Stokes equations are

first cast into a general form:
Ui+ FU)=0 ' (19)

where U is the vector of flow variables and F(U) represents the nonlinear and viscous terms. An implicit
approximation in time for this general equation can be written as [10]

ﬁAt n n _ At n ¥ n—1
[I+1+¢.A(U AU™ = 1+<pF(U )+1+¢AU (20)
where 4 = F(U) y is the Jacobian of F. This equation is kept in what is called “Delta Form”, referring to
the AU™ = U™*! — U™ term on the left hand side and is second order accurate in time for 9 = .9 =0 or
9=1p= -12- It forms the basis for most implicit time integration schemes.

To represent the complex geometry using a body-fitted mesh and clustering points in the regions of high
spatial gradient such as the boundary layer, a global, two-dimensional mapping is constructed from physical
space (z,y,z) to a uniform, Cartesian computational space (£,7, z). Both £ and 7 are in the range [0,1]. In
computational space (£,7,z),the Jacobian A(U) can be written as [11]

AU)=AU¢+BU,+CU_;+ DU

~VeeUge = VenUgn — VezUpg:

_Vnr/U,fm - Van,n: - V::U,z: (21)
where U = {p,u,v,w,T}T is an unsteady flow field and the matrices (4, B,C, D, Vi) are function of U and
its gradients and also contain the metrics terms.

Substituting (21) into (20), and using conventional finite difference or finite volume schemes for the spatial
derivatives usually results in large sparse matrix systems, which are not too difficult, but prohibitively time
consuming, to solve directly. Approximate factorizations are employed to improve the efficiency, reduce the
computer storage requirements and enhance numerical stability. Thus, factorized in the &, 7,z directions,
equation (20) can be written as:

[I + aAt(AA5 +D - V&Agg)]p =R (22)
(I +aldt(BA, = VipApy)]Q =P (23)
[I + aAt(CA: - V::A::)]AUn =Q (24)




where
= o R= = PN + o au! 2
l+¢ 1+ @ (25)
The factorizations introduce a O(At?) error compared to the unfactorized equations. This factorization error
can be eliminated by employing a subiteration time stepping procedure to recover the solution of (20). For
this purpose, rewrite equation (20) by substituting a new iterative index p+ 1 for the n + 1 terms and adding
UP to both sides of the equation, to obtain

I+ %?—A(U")]AU” = —-liF(UP)

142 .
- 1+"°U” 1f¢b ) (26)

with AUP = (UP*! —UP) and A(UP) = 8F/dU,. Equation (26) is the basic sub-iteration time advancement
scheme which will yvield second order time accuracy independent of choice of A(UP) if the sub-iteration
process converges. The n and n — 1 terms are evaluated from previous time level and after iterating p tlmes
the solution at time level n + 1 will be taken from the most recent UP*!. For example, choosing ¢ = 3 L and
¥ = 1, in the limit (assuming the iterative process converges) UP*! = UP, setting U™*! = UP*!, we have

U™ —qUn + U]

n+1ly __
A7 +FU™Y) =0 (27)

which is a second order in time, fully implicit approximation of equation (19).

This sub-iteration scheme requires that first the iterative process converge, and second the local sub-
iteration process be performed until the error is of higher order in time. In practice one finds that two to
three sub-iteration gives adequate accuracy for most problems.

For the spatial discretization, consider derivative operators in the uniform computational space (£,7)
where &;,7; represent the nodal locations with & = Ag(i — 1) for 1 < i < N and n; = An(j — 1) for
1 < j < N,. At interior nodes, the fourth-order-accurate central difference scheme is used for first and
second derivatives.

(g_é) IZAE[(f’ 2y — fir2) — 8(fic1 — fix1))] (28)

AR
(—6_6—2)1 - TZ(AE)Z [—(fi—-‘l - 2f1 + fi+‘2
+16(fic1 — 2fi + fir1)] (29)

Near the computational boundaries, finite difference operators that are biased toward the interior are re-
quired. As for the interior points, a five point stencil is used at the boundary grid point &. The resulting
difference schemes are forth and third order accurate for the first and second derivatives respectively. Hence,
At the first grid point &, the first and second derivative are expressed as :

(g—g) = IQIAE[ —25f1 +48fs — 36f3 + 16 f4 — 3f5] (30)
0? 1
(52) = Toagelith -2+ 0f + 45~ 13 @1
while at the second point &, they are
(%‘é) 1225[ 3f1 — 10y + 18f3 — 6f4 + fs) (32)

0? 1
(a_éf)l = m[35fl - 104f)_ + 11f3 - 56f4 + llfs] (33)
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Computational Domain

Figure 1: Flow configuration schematic

Similar expressions hold for the derivatives at nodes of N; —1 and N¢ but with the stencils reversed and the
signs switched on the coefficients for the first derivatives.
For the test filter in the dynamic SGS model, the following Simpson’s rule is used:

= 1

f,

i = E(fi—l +4fi + fir1) : (34)

It is only applied in the homogeneous direction, where the grid is uniform so that the filtering and differential
operation commute.

5 Initial and Boundary Conditions

The geometry and flow configuration are based on the experiments previously studied by Van Fossen et al.[5]
and is shown in Fig. 1. A finite-thickness flat plate is placed horizontally in the center of the test section
of a wind tunnel. The flat plate has an elliptical leading edge with a major to minor axis ratio 3:1 and is
held at a uniform temperature. The flow is confined on four sides by walls which define the test section.
The computational domain is 15D,10D and 1D in length, height and width. The inflow boundary is placed
at 4D upstream of the leading edge and the isotropic homogeneous free-stream turbulence is convected into
the domain from the inflow boundary and impinges on the leading-edge.

The boundary conditions used are as follows. On the body surface, no-slip and isothermal conditions
are applied. The density is obtained from the continuity equation. At the outflow, the parabolized Navier-
Stokes equation is solved using a known pressure gradient taken frumn previously computed potential flow
solution[11]. On the inflow, the boundary conditions are based on the locally one-dimensional Riemann
invariants. For a subsonic flow, four quantities must be specified. Here we constrain the entropy, spanwise and
tangential velocity, and the incoming Riemann invariant. The locally one-dimensional Riemann invariants
are defined in the direction normal to the inflow boundary as

2c 2¢
7_1, R2_Un+_’y—1

R1 =Un — (35)
where c is the local speed of sound and v, is the velocity normal to the boundary. Then on the inflow
boundary,

$ = Seo, W =W, v =77 + 14,
Ry =Ri+R), Ry=Roin (36)

here the overline quantities denote the base flow in the absence of inflow turbulence, primed quantities
represent the free-stream turbulence, and the subscript ¢ denotes the tangential velocity along the inflow
boundary in the £ — y plane. In the present computation, the inflow is not far away from the body and the
flow passage is significantly blocked by the presence of the flat plate, so the potential solution should not
be used directly to form the incoming Riemann invariant due to the development of the boundary layer on




the body. Hence we first compute the two dimensional steady base flow using the same set of the inflow
conditions but in the absence of turbulence. The velocities T, and 7, are determined by

= 07 En = Unp (37)

|

Here w is the vorticity at the inflow and v,,, denote the normal velocity obtained from the potential solution.
These overline quantities are used to form the R; and the primed quantities are interpolated from the
precomputed isotropic homogeneous turbulence. The interpolation is implemented using fourth order B-
spline. The Ra;nrare computed from first order extrapolation from the interior domain Rajnt = 2Ran—1 —
Ron_». When the Riemann invariants are obtained, the values of v, and c at the inflow can be obtained.
When passing the free stream disturbance, the turbulence is multiplied by a function ezp(—(x/")?) so that
turbulence only enters the center vertical portion near = 0 of the inflow plane. This is reasonable since the
turbulence far from the body in the transverse direction is not expected to impact the flow i.ear the body.

6 Generation of Free-Stream Turbulence

In the present study, the mean flow at the inlet boundary is nearly uniform and shear-free, so the free-stream
turbulence can not be generated within the computational domain. To have realistic free-stream turbulence,
we performed a large eddy simulation of isotropic homogeneous turbulence separately. After the turbulent
flow evolves from its initial field to a state with specified intensity and length scale, we use that flow field as
the free stream turbulence and convect it into the domain using the boundary conditions (36).

Since the isotropic homogeneous turbulence is pre-computed in a finite domain, when it is passed as
free-stream turbulence through the inflow, after a certain time the signal will repeat itself. To break this
periodicity, phase jittering can be applied to the free stream turbulence data. However, to minimize the
periodicity of the signal, and produce more realistic turbulence for the present flow configuration, we choose
the computational domain to be a rectangular box which is 4D, 4D and 1D in z, y and z direction.
Accordingly, the grid size is 128x128x32 so that Ar = Ay = Az, a necessary condition to preserve the
isotropy of the turbulence. The numerical code for the large eddy simulation is adapted from an existing
DNS code [12] by incorporating the same dynamic SGS model. The temporal and spatial discretization
are fourth order Runge-Kutta and the sixth order compact finite difference scheme [13]. Periodic boundary
conditions are applied in all spatial directions. The initial condition is a purely solenoidal velocity field with
uniform density and temperature field. The initial three dimensional energy spectrum is of the form

E(k) o Kezp[~2(k/k,)’] | (38)

where the peak wavenumber of the spectrum k, is taken as 87. A few small wavenumbers whi~h represent
the long waves permissible in the z and y directions but not supported in z are zeroed out initially to preserve
the turbulence isotropy. After the turbulence develops from its initial state, the isotropic turbulence field
with intensity u).,,,/us = 0.08 and integral scale L/D = 0.1 is taken as our free-stream turbulence data.
The turbulent Reynolds number at the inlet is Re; = u..,,,L/v = 80.

rms

7 Results

The computational grid in the x-y plane is generated by using an algebraic multi-surface method [14] which
gives desirable orthogonality at the body surface and at the inflow /outflow boundaries. The grid is clustered
towards the wall and the leading edge but is uniform in z since the flow is assumed homogeneous in the
spanwise direction. Unlike the conventional C-type grid which is largely stretched toward the far upstream,
the grid resolution at the inflow should be determined by the characteristic scale of the free-stream turbulence
and in the present case should be as isotropic as possible. The grid used in the present simulation is of size
383x192x64 in the streamwise, normal and spanwise directions. The grid line distribution in = — y plan is
shown in Fig.2. The grid resolution at the inflow boundary is approximately the same as in the LES of
isotropic homogeneous turbulence. To represent the experimental conditions accurately with the current
flow configuration, the simulations are performed in a progressive way. We first generate the incompressible
potential flow around the body with blockage effect taken into account, then use it as the initial condition to




B

o} A I a

Figure 2: Computational mesh for the upper half of the domain in z — y plane. For clarity, only every fourth
grid line of a grid 384x192 grid is shown here.
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Figure 3: Leading edge velocity gradients. Solid line with plus sign is the present simulation, and the circles
are taken from Van Fossen et al (1994).

compute the compressible potential flow. After the compressible potential solution is obtained , it serves as
the initial condition and part of the boundary conditions for the two dimensional laminar viscous calculation.
For the three dimensional case, we take the two dimensional viscous solution as the initial condition and
performed the simulations with the inlet disturbances as i) laminar organized disturbances and ii) free-stream
turbulence. The purpose of studying the steady organized disturbance is to gain insight into the basic
interaction process at the leading edge and guide the choice of appropriate parameters for the free-stream
turbulence case. In Van Fossen’s experiments, four different models with the same leading edge diameter
but different major to minor axes ratios from 1:1, 1.5:1, 2.25:1 to 3:1 were used to produce different leading
edge velocity gradient. The same mode! parameters are used here for the two dimensional calculations. Fig.
3 shows the comparison of leading edge velocity gradients from the compressible potential solution M = 0.2
with the previous results obtained by a panel method[5]. Note the leading edge velocity gradients are affected
significantly by the blockage effect, and the excellent agreement shows that this important feature of the
experiments has been captured accurately.

The two dimensional viscous calculation is validated against analytical self-similarity solutions at the
leading edge for heat conducting, compressible flow by Reshotko and Beckwith[15]. Fig. 4 and Fig. 5 show
the comparisons between numerical and similarity solutions for the velocity and enthalpy profiles inside the
boundary in the leading edge stagnation point region. Typically, the flow impinging on gas turbine blade
is in the high subsonic or transonic regime, so the profiles shown here are for a high Mach number case
M = 0.8. The low Mach number case M = 0.2, which corresponds to the experimental conditions, are also
in excellent agreement with the similarity solutions. In these cases the ratio between wall temperature and
free stream total temperature are 2.0 and Pr is taken as 1.0. As required to possess similarity solutions, the
viscosity is assumed to be a linear function of temperature.

Before introducing the free stream turbulence at the inflow for large eddy simulation, the inflow boundary
conditions based Riemann variants are tested. Fig. 6 show the contours of the disturbance velocities u,
v and the vorticity w when a circular Taylor vortex is entering domain. The velocity disturbance level




0.8

us/u
<

0.6

0.4r

— N-~S computation
0.2F — - Similarity solution

¥
o
w
wh
w
»
IS

0 0.5 1 LS
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Umaz [Usc = 18% and radius of the vortex is R7ayor/D = 1.0. It can be seen that vortex structures are kept
fairly well even for this relatively large amplitude disturbance case.

The typical flow parameters for viscous laminar calculations are Rep = 20,000, M = 0.2, Ty, /To =
1.075. where Ty, and Ty are the wall and total free stream temperature.The non-dimensional leading-edge
heat transfer coefficient, or Fréssling number, is defined as

Fr= ijg =- T’"l/.l , (39)
Rep, ATRep

where the T, is the nondimensional normal derivative of the temperature on the body surface. As in [7],
the characteristic temperature difference LT for the evaluation of Fr is chosen to be the difference between
the wall temperature and the adiabatic wall temperature T,, — To,,. The adiabatic temperature can be

approximated by .
Tow =VPr (TO - Tedge) + Tedge (40)

Here T,q4 is the temperature at the edge of the boundary layer. Using the isentropic relation and assuming
constant pressure across the boundary layer, the Tq4¢ is obtained by

Pwa p—
Tedge = Tt (TO”)('r 1)/~ (41)

where P, is the free stream total pressure. For the two dimensional computation in the absence of inflow
disturbances, F'r is obtained as Fr = 0.748. The corresponding experimental value for the 3:1 model gives
Fr =0.750 at a slightly higher Reynolds number. :

For the organized disturbance case, a spanwise variation of the form u = up(z,y) + Ausin(27z/A) is
imposed at the inflow for the streamwise velocity but the total temperature at the far upstream is kept
constant. The wavelength is chosen to be in the range of 0.05D to 1.0D and the amplitude is Au = 0.05uq.
Fig.7 shows the comparison of the heat flux distribution on the body surface with and without inflow
disturbances. The value for the disturbed case is averaged over the spanwise direction. The heat transfer
rate is increased by about 30% with 5% intensity of the incoming disturbances at A = 0.1D. The distribution
of the heat transfer coefficient on the surface remains almost the same as for the undisturbed case, which is
consistent with previous numerical and experimental studies. The dependence of heat transfer enhancement
on the spanwise wavelength A is shown in Fig. 8. The enhancement decreases when the wavelength increases.
But for very short wavelength, the disturbances are dissipated by viscosity and the flow reverts back to the two
dimensional case. So an optimum wave length A,p; which gives maximum heat transfer enhancement is found
around 0.1D for the present flow conditicn. Note that even though the stagnation point has the maximum
heat transfer rate, the maximum increase in the local Fr occurs downstream of the stagnation point. When
large heat transfer enhancement occurs, strongly 3D mushroom-like flow structure are observed due to the
vortex stretching and the large reversed streamwise velocity at the leading edge. The typical temperature
contour projected onto the stagnation plane corresponding to the high heat transfer rate is shown in Fig. 9.

Before we perform the LES of isotropic homogeneous turbulence in a rectangular box, the implementation
of dynamic SGS stress model with compact difference scheme and Simpons 3-point filter are first validated
through comparison with the DNS [16] and LES of the Comte-Bellot and Corrsin’s experiments [17] in a
cubic box. Excellent results have been obtained which validate the numerical scheme. These are not shown
here for brevity. When applying to the current simulation in a rectangular box, initially the turbulence
Reynolds number is set as Re; = 100 with specified spectrum and random phase in spectral space. After
small scale eddies develop and the turbulence become realistic, we stop the simulation at Re; = 80 and save
the data for later use as free stream turbulence. Turbulence integral scale L is determined by a least-squares
curve-fitting to the autocorrelation data using an exponential function [5]

R(r)=e" /L (42)

Data between 0.33 < R(r) < 1.0 were used for curve fit. The exponential function does not have the correct
limiting behavior for very small values of r, but the fit is satisfactory over the main domain and the fitted
R(r) can be integrated from 0 to oo to give the turbulence integral length scale. Fig. 10 shows the initial
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a)

Figure 6: Passing a Taylor vortex through the inflow, upper row t=1.18, lower row t=2.35. a) streamwise
velocity, b) transverse velocity, ¢) spanwise vorticity.
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Figure 7: Heat transfer rate on the surface 2D laminar flow vs. spanwise averaged 3D case.
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Figure 8: Increase of heat transfer vs spanwise wavelength at different streamwise locations on the body
surface.
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Figure 9: Temperature contours projected on the stagnation x-z plane.

and final three dimensional energy spectrum. Fig. 11 shows the velocity skewness reaches the typical value
—0.4 —0.5 for the realistic turbulence at Re; about 80. The time development of turbulence kinetic energy
is shown in Fig. 12. Notice that w'? is slightly larger than u2 and " in the time series, which may be caused
by the different size of the computational domain in the z direction compared to the z and y directions.
Since this lack of isotropy is small, it is not expected to have any major effect. As we started with the
uniform density field, Fig. 13 shows the time development of the RMS value of density fluctuation. The
time development of the dynamic model coefficient C is shown in Fig. 14.

Fig. 15 shows the turbulence intensity along the the stagnation stream line. The root-mean-square values
are obtained by averaging u', v’ and w' in time and in the spanwise direction. The turbulence is largely
decaying until it reaches a distance of about D from the leading edge where the behavior of «/, v’ and w'
changes. Notice that close to the body u' and w' are amplified while v’ continues to decay. In Van Fossen’s
experiment, a power law curve of the form Tu ~ 2™ was used to fit the decay of free-stream turbulence in
the absence of the model versus the distance downstream of the turbulence-generating grid. The power-law-
fitted curve is also plotted in Fig. 15 with the same exponent m = —0.83 as used in the experiments. The
fairly good agreement indicates that the initial decay rate of the free-stream turbulence has been captured
correctly by the present simulation.

Fig. 16 uses a logarithmic scale on a slightly shifted x-axis to show the same data as in Fig. 15 with the
leading edge region amplified for clarity. The transformation of the x-axis used here is log(4.02 — z). Note
z = 4 corresponds to the location of the leading edge. It reveals that the free-stream turbulence will go
through three different processes as it impinges on the leading edge. First is the free turbulence decay process,
corresponding to the distance from the inflow to approximately z = 3, when the presence of the body does
not affect the turbulence significantly. The second process is the inviscid distortion process, approximately
corresponding to the distance from z = 3 to z = 3.95, where the free-stream turbulence : ..dergoes large
mean flow strain caused by the diverging mean streamlines. A direct, quantitative comparison between the
present results and the compressible rapid distortion theory (RDT)[18] is not easily obtained due to the
viscous effect and the relatively small scale of turbulence, but the increase of u..,,, and w.,,,, and decrease of
Uy, are qualitatively in agreement with the temporal prediction of RDT under plane strain[19]. The third
is the viscous interaction, which occurs within the leading edge boundary layer thickness. Also notable is
that the spanwise velocity w,,,, continues to increase significantly while u.,,,, and v/, start decreasing due
to the presence of the wall. This is due to wall-blocking or splatting effect[20] [21].

Fig. 17 shows the vorticity components along the stagnation streamline. Clearly the transverse vorticity
wy increases dramatically as the leading edge is approached. After being wrapped along the surface as the
flow impinges on the leading edge, it forms large streamwise vorticity and produces the 'mushroom-like’ flow
structures downstream of stagnation point as clearly shown in Fig. 21, which are directly responsible for
the heat transfer enhancement. Fig. 18 shows the time history of wym, with the average taken only in the
spanwise direction. At the inflow region, the presence of small scale turbulence is evident in the fluctuations
of the signal. By the time the flow reaches the leading edge region, most of the small scales of turbulence
are damped by the viscosity. However, under the strong strain imposed by the mean flow, the free-steam
turbulence is re-organized into persistent flow structures, which significantly influence the boundary layer at
the leading edge.

Fig.19 shows the spanwise correlation length L. for u' along the stagnation streamline. Here L. is defined
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Figure 10: Initial and final three dimensional energy spectrum for isotropic homogeneous turbulence in a
rectangular box.

as one half of the length at which the spanwise autocorrelation curve for «' first crosses zero. L. can be
regarded as a length scale characterizing the size of the energetic eddies in the spanwise direction. A very
rapid decrease of L. occurs in the leading edge region, indicating the strong vortex stretching effect. L.
reaches its minimum value at the outer edge of the boundary layer and then increases inside the boundary
layer where viscosity is predominant. The minimum value of L. is only about one third of its value at
inlet. The ratio of the minimum L. to the local boundary layer thickness ¢ is about 2-3. These observations
suggest that the characteristic turbulence scale at the leading edge is largely determined by the local strain
rate rather than by the free-stream turbulence scale at the inlet. Computationally, this will determine the
required spanwise grid resolution in the leading edge region, because even with large eddy simulation, the
grid has to be fine enough to resolve these “large eddies”, especially in high Reynolds number case where
the ratio of the turbulence length scales in the free-stream and at the leading edge is expected to increase.

The comparison of the Frossling number on the surface with and without free-stream turbulence is
shown in Fig. 20. For the turbulent case, Fr is averaged over time and along the spanwise direction. The
increase in Fr is about 11 %, and its distribution is very much the same as in laminar case. For the same
flow configuration, the experiments [5] were carried out at a higher Reynolds number. If we extrapolate
Frossling number increase over the laminar flow case using a correlation developed from high Reynolds
number experimental data[5] to the conditions of the current simulations, a value of 10% is obtained. This
extrapolation includes the effect associated with the decay of free-stream turbulence from the inlet to a
location just outside the boundary layer!, as also done in reducing the experimental data.

The current computational value is in good agreement with the experimental correlation. The heat-
transfer increase is, however, modest. This is because of the modest Reynolds number of the present
LES. As discussed earlier the spanwise length scale decreases sharply within the boundary layer, and a
new computation with refined resolution is currently underway. Fig. 22 shows an instantaneous heat flux
contour on the blade surface. Clearly, the disturbances are largely stretched in the streamwise direction, and
the strong streamwise vortices produce streak-like regions with high heat transfer rate.

8 Summary

The leading edge heat transfer enhancement under incoming organized disturbance and free-stream turbu-
lence are investigated numerically. For the laminar organized disturbances, the three dimensional compress-
ible Navier-Stokes equations are solved using high-order finite differencing and an implicit time marching
scheme. Significant heat transfer increase is obtained for small inflow disturbance amplitude. The enhance-
ment decreases with increased length scale, and an optimum length scale is found which gives maximum heat

In a conference paper AIAA-2001-1016, we had missed to account for this change, and incorrectly deduced that the heat-
transfer augmentation observed in LES was lower than the experimental correlation.
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Figure 11: Time development of the velocity gradient skewness.r = L/u,ms, where L is the turbulence
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Figure 14: Time development of the dynamic SGS model coefficient C.
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Figure 16: Turbulence intensity along the stagnation streamline, transformed x axis.
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Figure 17: Turbulence vorticity components along the stagnation streamline, transformed x axis
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Figure 18: Time history of < w2 >1/2 at locations close to inlet and leading edge along stagnation streamline.
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Figure 19: Spanwise correlation length for u' along the stagnation streamline.
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Figure 20: Frossling number distributions on the leading edge region.

Figure 21: Cross section temperature contour at various streamwise locatio.s.

Figure 22: Heat flux contour on the leading edge with free-stream turbulence.
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transfer increase. For the free-stream turbulence case, a large eddy simulation using the same algorithm with
dynamic SGS model was performed. The free-stream turbulence used in the LES was generated by a sepa-
rate large eddy simulation of homogeneous isotropic turbulence. The interaction of free-stream turbulence
impinging on the leading edge was found to involve three distinct processes: free turbulence decay, inviscid
distortion and viscous interaction. Strong streamwise vortices are formed on the wall through this interac-
tion and are largely responsible for the heat transfer enhancement. The wall heat flux distribution under
free-stream turbulence is found to keep almost the same shape as in the laminar case. Through the present
simulation, it is observed that the typical energetic mushroom-like vortices which are formed at the leading
edge are the direct cause of turbulent heat transfer enhancement. The size of these structures is typically
2-3 times the leading edge boundary layer thickness. To characterize the scale of these structures at different
Reynolds number, as indicated in [8], the local boundary layer thickness would be a better choice than a
fixed reference length such as D. This poses a severe challenge to a computational approach such as large
eddy simulation, because it requires that these “large” energetic turbulence structures at the leading edge
must be fully resolved to have an accurate prediction of turbulent heat transfer under free-stream turbulence.
For the modest Reynolds number of the current simulations the predictions were found to agree well with
experimental data. However, to capture the free-stream turbulence effects in higher Reynolds number flows
it will be necessary to use a significantly refined grid within the boundary layer. Our results suggest that
what is needed is, in effect, a hybrid simulation strategy where the turbulence outside and away from the
blade surface is captured using LES techniques while a finer DNS-like grid is embedded within the near-wall
region to resolve the smaller eddies responsible for near-wall effects. Such a methodology is being developed
in an extension of the work supported under this grant.

One of the primary objectives of current research is to develop large eddy simulations as a tool for heat
transfer prediction over a turbine blade immersed in a high-subsonic/transonic hot stream containing free
stream turbulence. So the next logical step will be to extend the current simulation to a higher Mach
number case, which is not easily investigated experimentally. The three dimensional moving wake caused
by the upstream blade rows is another essential element of the flow impinging on a downstream blade row.
Instead of isotropic homogeneous turbulence, wake turbulence can also be introduced as the free-stream
disturbance. This combined study would provide a unique assessment of the important blade heat transfer
mechanism relevant to the gas turbine environment.
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